

IIPM SCHOOOL OF ENGINEERIN AND TECHNOLOGY

LESSON PLAN: SUMMER 2023

Sub : Fluid Mechaniccs & Hydraulic Machine (Th-3)

Faculty name : Deeptikant Shharma

Branch : MECHANICAL ENGINEERING

Semester : 4th

Duration : 60 hours

OBJECTIVE

THE COURSE ON FLUID MECCHANICS IS DEVISED TO INTRODUCE FUNNDAMENTAL ASPECTS OF FLUID FLOW BEHAVIOUR.

STUDENTS WILL LEARN TO DEVELOP STEADY STATE MECHANICAL ENERGY BALANCE EQUATION FOR FLUID FLOWW SYSTEMS, ESTIMATE PRESSURE DROP IN FLUID FLOW SYSTEMS AND DETERMINE PERFORMANCE CHARACTERISTICS OF FLUID MACHINERY.

LEARNING OUTCOME: -sl.no	CHAPTER	PROPOSED WEEK FOR TEACHING	LECTURE NO.	SUB. TOPIC	IMPORTANT TEACHINNG POINTS	CONTENT SOURCE
1	1		1	Properties of Fluid	DENSITY OR MASS DEENSIRTY SPECIFIC WEIGHT OR WEIGHT DENSITY, SPECIFIC VOOLUME SPECIFIC GRAVITY	R.K. BANSAL
2			2	Properties of	solve simple	R.K. BANSAL
				Fluid	problems.	
3			3	Properties of Fluid	VISCOCITY UNITS OF VISCOCITY	R.K. BANSAL
4			4	Properties of Fluid	NEWTONS LAW OF VIISCOSITY VARIOUS VISCOSITY WITH TEMPERETURE	R.K. BANSAL
5	2		1	Properties of	solve simple	R.K. BANSAL
				Fluid	problems	
6			5	Properties of Fluid	SURFACE & TENSION AND CAPILARITY	R.K. BANSAL
7			3	Properties of Fluid	SURFACE TENSION O N LIQUID DROPLET SURFACE TENSION O N A	R.K. BANSAL

				HOLLOW BUBBLE	
8		4	Properties of	SURFACE TENSION ON A	R.K. BANSAL
			Fluid	HOLLOW JET	
				solve simple	
				problems	
9	3	1	Fluid Pressure	FLUID PRESSURE AT A POINT	R.K. BANSAL
			and its	PASCAL'S LAW	
			measurements		
10		2	Fluid Pressure	PRESSUREMVARIEATION IN A	R.K. BANSAL
			and its	FLUID AT REST	
			measurements		
11		3	Fluid Pressure	solve simple	R.K. BANSAL
			and its	problems	
12		4	Fluid Pressure		R K BANSAI
			and its	ATMOSPHERIC AND VACUME	
			measurements	PRESSURES	
13	4	1	Fluid Pressure	MEASUREMENT OF PRESSURE	R.K. BANSAL
			and its	SIMPLE MANOMETERS	
			measurements		
14		2	Fluid Pressure	solve simple	R.K. BANSAL
			and its	problems	
45			measurements		
15		3	and its	DOUBLE COLUMN MANO METER	R.K. BANSAL
			measurements	METER	
10		4	Eluid Proceuro	solve simple	
10		4	and its	solve simple	K.K. BANSAL
			measurements	problems	
17	5	1	Hydrostatics	INTRODUCTION	R.K. BANSAL
				TOTAL PRESSURE & CENTER	
				PRESSURE	
18		2	Hydrostatics	VERTICAL PLANE SURFACE	R K BANSAI
10		2	i i yu ostatics	SUBMERGED IN LIQUID	
19		3	Hydrostatics	solve simple	R.K. BANSAL
				problems	
20		4	Hydrostatics	HORIZONTAL PLANE SURFACE	R.K. BANSAL
			-	SUBMERGED IN LIQUID	
21	6	1	Hydrostatics	INCLIND PLANE SURFACE	R.K. BANSAL
				SUBMERGED IN LIQUID	
22		2	Hydrostatics	SIMPLE PROBLEMS	K.K. BANSAL
23		3	Hydrostatics	INCLIND PLANE SOLVE	R.K. BANSAL
		-	,	SIMPLE PROBLEMS	
24		4	Hydrostatics	SOLVE SIMPLE	R.K. BANSAL
				PROBLEMS	
25		1	Kinematics of	METHODS OF DESCRIBING	R.K. BANSAL
	7		Flow	FLUID MOTION	

26		2	Kinematics of	TYPES OF FLUID FLOW	R.K. BANSAL
			FIOW		
27		3	Flow	RATE OF FLOW OR DISCHARGE	R.K. BANSAL
28		4	Kinematics of Flow	SIMPLE PROBLEMS	R.K. BANSAL
29	8	1	Kinematics of Flow	CONTINUITY EQUATION IN THREE- DIMENSION	R.K. BANSAL
30		2	Kinematics of Flow	CONTINUITY EQUATION IN CYLINDRICAL POLAR CORDINATE	R.K. BANSAL
31		3	Kinematics of Flow	SIMPLE PROBLEMS	R.K. BANSAL
32		4	Kinematics of Flow	SIMPLE PROBLEMS	R.K. BANSAL
33	9	1	orifices, notches & weirs	CLASSIFICATION OF ORIFIC FLOW THROUGH OF ORIFIC	R.K. BANSAL
34		2	orifices, notches & weirs	COFFICENT OF VELOCITY COFFICENT OF CONTRACTION COFFICENT OF DISCHARGE	R.K. BANSAL
35		3	orifices, notches & weirs	SIMPLE PROBLEMS	R.K. BANSAL
36		4	orifices, notches & weirs	DETERMINATION COFICENT OF VELOCITY SIMPLE PROBLEMS	R.K. BANSAL
37	10	1	orifices, notches & weirs	CLASSIFICATION OF NOTCH & WIRE	R.K. BANSAL
38		2	orifices, notches & weirs	DISCHARGE OVER A RECTANGULAR NOTCH & WIRE SIMPLE PROBLEMS	R.K. BANSAL
39		3	orifices, notches & weirs	DISCHARGE OVER A TRINGLE NOTCH & WIRE SIMPLE PROBLEMS	R.K. BANSAL
40		4	orifices, notches & weirs	DISCHARGE OVER A TRAPEZOIDAL NOTCH & WIRE	R.K. BANSAL
41	11	1	Flow through pipe	INTRODUCTION LOSS OF ENERGY IN PIPES	R.K. BANSAL
42		2	Flow through pipe	LOSS ENERGY DUE TO FRICTION	R.K. BANSAL
43		3	Flow through pipe	SIMPLE PROBLEMS	R.K. BANSAL
44		4	Flow through pipe	Darcy's and Chezy's formula Solve Problems using Darcy's and Chezy's formula.	R.K. BANSAL
45	12	1	Flow through	SIMPLE PROBLEMS	R.K. BANSAL

			pipe		
46		2	Flow through	MINNER ENERGY HEAD LOSSES	R.K. BANSAL
47		3	Flow through	SIMPLE PROBLEMS	R.K. BANSAL
48		4	Flow through pipe	Hydraulic gradient and total gradient line	R.K. BANSAL
49	13	1	Impact of jets	INTRODUCTION FORCE EXERTED BY THE JET ON A STATIONARY VERICAL PLATE	R.K. BANSAL
50		2	Impact of jets	INTRODUCTION	R.K. BANSAL
51		3	Impact of jets	FORCE EXERTED BY THE JET ON STATIONARY VERTICAL PLATE	R.K. BANSAL
52		4	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
53	14	1	Impact of jets	Derivation of work done on series of vanes and condition for maximum efficiency.	R.K. BANSAL
54		2	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
55		3	Impact of jets	FORCE EXERTED BY A JET ON STATIONARY INCLIND PLATE	R.K. BANSAL
56		4	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
57	15	1	Impact of jets	FORCE EXERTED BY A JET ON STATIONARY INCLIND PLATE	R.K. BANSAL
58]	2	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL
59		3	Impact of jets	JET STRIKE THE CURVED PLATE AT ONE END TANGENTIALLY	R.K. BANSAL
60		4	Impact of jets	SIMPLE PROBLEMS	R.K. BANSAL

TEXT BOOK SUGGESTED : INTERNET & PERSONAL NOTES

SIGNATURE OF

FACULTY MEMBER

HOD

PRINCIPAL/ DIRECTOR