

IIPM SCHOOL OF ENGINEERIN AND TECHNOLOGY LESSON PLAN: SUMMER 2022 THERMAL ENGINEERING-II

Branch: Mechanical Semester: 4th

Duration:60

Faculty name: PRASANNA MOHANTY

Learning Outcome: Understanding effectiveness of

- ✓ *The power developed in I.C engine and efficiency.*
- \checkmark The principle, performance and application of air compressor.
- ✓ Thermodynamic properties of steam using steam tables & mollier chart.
- ✓ The working of various steam generators i.e. Boilers.
- ✓ The vapor power cycles and computing work done & efficiencies thereof.

Sl. No	Chapter	Proposed Week for Teaching	Period No.	Subject Name	Important Teaching Points	Content Source
1	I	1 st	1	e	 Define mechanical efficiency, 	
2			2	l i	Indicated thermal efficiency,	
3			3	ngi	Relative Efficiency,brake thermal efficiency	
4			4	G (overall efficiency	
5		2 nd	1	fI.C	Mean effective pressure &specific fuel consumption.	
6			2	Performance of I.C engine	Define air-fuel ratio & calorific value of fuel.	Thermal engg R .S. khrumi
7			3	nan	Work out problems to determine efficiencies &	
8			4		Specific Fuel Consumption.	
9		3 rd	1	.to	➤ Solved Simple Numeric 1	
10			2	er	> ASSIGNMENT	
11			3		> CLASS TEST	
12	II		4		Explain functions of compressor & industrial use of compressor air	
13		4 th	1		Classify air compressor & principle of operation.	
14			2	sor	Describe the parts and working principle of reciprocating Air compressor.	
15			3	Air Compressor	 Explain the terminology of reciprocating compressor such as bore, stroke, 	Thermal engg
16			4	mo	 pressure ratio free air delivered &Volumetric efficiency. 	R .S. khrumi
17		5 th	1	r C	Derive the work done of single stage with and without Clearance.	
18			2	Ai	 Derive the work done two stage compressor with and without Clearance. 	
19			3		Solve simple problems (without clearance only)	
20			4		> ASSIGNMENT	

21		6 th	1		> CLASS TEST	
22	III		2		Difference between gas & vapours.	Thermal engg
23			3		> Formation of steam.	R .S. khrumi
24			4	am	Representation on P-V, T-S, H-S, & T-H diagram.	KIII UIIII
25			4	te	Definition & Properties of Steam.	
26		4 th	1	Properties of Steam	Use of steam table & mollier chart for finding unknown properties.	
27			2	es (Non flow & flow process of vapour.	
28			3	ŢŢ.	> P-V, T-S & H-S, diagram.	
29			4	be	Determine the changes in properties	
30		5 th	1	rc	➤ Solve simple numerical.	
31			2		> ASSIGNMENT	
32			3		> CLASS TEST	
33	IV		4		Classification & types of Boiler.	Thermal engg
34		$6^{ m th}$	1	ĭ	> Important terms for Boiler.	R .S. khrumi
35			2	ratc	Comparison between fire tube & Water tube Boiler.	
36			3	Steam Generator	 Description & working of common boilers (Cochran, Lancashire, 	
37			4	Ğ	Description & working of common boilers Babcock &Wilcox Boiler)	
38		$7^{ m th}$	1	am	 Boiler Draught (Forced, induced & balanced) 	
39			2	te	Boiler mountings & accessories.	
40			3 4	7 2	➤ ASSIGNMENT ➤ CLASS TEST	
42	V	8 th	1		Carnot cycle with vapour.	Thermal engg
43	·		2	Cycles	 Derive work & efficiency of the cycle. 	R .S. khrumi
44			3	ý	Rankine cycle.	
45			4	Ď.	➤ Representation in P-V, T-S & h-s	
46		9 th	1	'eı	diagram. ➤ Derive Work & Efficiency.	
47			2	<u></u>	Effect of Various end conditions in	
48				P	Rankine cycle.	
49			3	Ш	Reheat cycle & regenerative Cycle.	
50			4	Steam Powe	Solve simple numerical on Carnot vapour Cycle & Rankine Cycle.	
51		10 th	1	∞	> ASSIGNMENT	
52 53	VI		3		CLASS TESTModes of Heat Transfer	Thermal engg
33	V I		3	<u> </u>	(Conduction, Convection, Radiation).	R .S. khrumi
54			4	sfe	 Fourier law of heat conduction and thermal conductivity (k). 	
55		11 th	1	an	Newton's laws of cooling.	
56			2	Tr	Radiation heat transfer (Stefan, Boltzmann &	
57			3	Heat Transfer	Kirchhoff's law) only statement,no derivation & no numerical problem.	
58			4		 6.5 Black body Radiation, Definition of Emissivity, 	
59		12 th	1		absorptivity, & transmissibility.	

60		2]	➤ Solved Simple Numerical	Thermal engg R .S. khrumi	
61		3		> ASSIGNMENT	K .S. Knrumi	
62			4		> CLASS TEST	

Text book suggested:

➤ Thermal Engineering.

➤ Thermal Engineering. S.Chand R.S. Khurmi Dhanpat Rai A.R.Basu > Thermal Engineering. Satya Prakash A.S. Sarao

Signature of Faculty Member HOD Principal/ Director